

Completely Alternating Copolymerization of CO₂ and Epoxides to Polycarbonates

Donald J. Darensbourg

Texas A&M University, Department of Chemistry djdarens@mail.chem.tamu.edu

Greener Synthesis of Polycarbonates

• No extraneous solvent required

ether linkages

M = Cr, Co

- 100% atom economy
- Constructive use of abundant "waste" C1 feedstock
- Living polymerization

Typical Catalytic System: (salen)M(III)X with onium salt cocatalyst

PPNX

*n*Bu₄NX

 $\mathbf{R}_3 = -\mathbf{C}_2\mathbf{H}_4$ -, cyclohex/l

 $R_1 = R_2 = {}^{t}Bu$

- Robust, tetradentate* ligand
- Activity/Selectivity tunable by altering

 R_1, R_2, R_3, M, X

Darensbourg, D. J. Chem. Rev. 2007, 107, 2388-2410.

Darensbourg, D. J., Wilson, S. J. Green Chem. 2012, 14, 2665-2671..

Typical System:

Monitoring Polymerization Kinetics – in situ ATR FT-IR

Routes to Cyclic Carbonates

Metal free pathway has much lower kinetic barrier.

growing polymer chain
[M] metal catalyst
x anionic initiator

Copolymerization of Styrene Oxide and Carbon Dioxide

Thermal stability up to 300 °C and Tg = 80 °C

X = 2.4 dinitrophenoxy

PPNX as cocatalyst

25 °C, TOF = 75 h^{-1} @ 2.0 Mpa CO₂ Selectivity PSC:SC of 99:1

Wu, G.-P.; Wei, S.-H.; Lu, X.-B.; Ren, W.-M.; Darensbourg, D. J. *Macromolecules* **2010**, *43*, 9202. Wu, G.-P.; Wei, S.-H.; Ren, W.-M.; Lu, X.-B.; Li, B.; Zu, Y.-P.; Darensbourg, D. J. *Energy & Environmental Sci.* **2011**, *4*, 5084-5092.

Rapid and Reversible Chain Transfer Processes

Bimodal Distribution of Molecular Weights

Polyether Polyols

- Polyols currently used derived 100% from petroleum resources (polyethers).
- Replaced with polycarbonate polyols derived in part (~50%) from CO₂.

Adhesives, Sealants & Binders Coatings & Elastomers Polyurethane

Polyol Feedstocks

Appliances

Footwear

Building & Construction

http://www.econic-technologies.com/technologies/products/polyols/

Coupling of CO₂ and Indene Oxide

Stephanie Wilson

Darensbourg, D.J.; Wilson, S. J. J. Am. Chem. Soc. 2011, 133, 18610-18613.

Binary vs Bifunctional Catalyst Systems

versus

Selectivity for Polymer

 $\begin{bmatrix} 0 & 0 \\ 0$

Darensbourg, D.J.; Wilson, S. J. Macromolecules 2013, 46, 5929.

Bifunctional Catalyst System – How They Work

Design of New Polymeric Materials

- Terpolymerization, addition of a second epoxide monomer.
- Postfunctionalization of copolymers.
- Diblock polymers incorporating ROP of other cyclic monomers, e.g., polycarbonate-polylactide

(NOTE: polylactides are among the few biodegradable polymers with FDA approval for human clinical use. Controlled drug delivery and tissue engineering scaffolds.)

Terpolymerization with Postpolymerization Functionalization

Using free-radical initiator (AIBN), add

 \rightarrow HS-CH₂CH₂OH (2-mercaptoethanol)

 $\rightarrow HS-CH_2-C \stackrel{O}{\searrow} (thioglycolic acid)$

→ Deprotonate latter ⇒ water-soluble polymer

Postfunctionalization of Copolymers \Rightarrow Hybrid Polymers

Darensbourg, D. J.; Tsai, F.-T., *Macromolecules*, **2014**, *47*, 3806—3813.

Functionalization of Polycarbonate Films

Tandem Synthesis of Poly(styrene carbonate-block-lactide)

A One-Pot Synthesis of a Triblock Copolymer from PO/CO₂ and Lactides

Darensbourg, D. J.; Wu, G.-P. Angew. Chem. Int. Ed. 2013, 52, 10602-10606.

Darensbourg, D. J.; Chung, W.-C.; Wang, K.; Zhou, H.-C. ACS Catalysis, 2014, 4, 1511–1515.

Acknowledgements

DJD Group Members:

Wan-Chun Chung Samuel Kyran Andrew Yeung Yanyan Wang Dr. Fu-Te Tsai Dr. Rongjiao Zhu Dr. Hamidreza Samouei

Former DJD Group Members:

Dr. Sheng-Hsuan Wei Dr. Stephanie Wilson Dr. Ross Poland Dr. Osit Karroonnirun Dr. Adriana Moncada Dr. Adriana Moncada Dr. Wonsook Choi Dr. Eric Frantz Dr. Eric Frantz Dr. Shawn Fitch Dr. Jeremy Andreatta Dr. Jeremy Andreatta Dr. Carla Rodarte Dr. Adolfo Horn Jr. Dr. Binyuan Liu Dr. Bo Li Dr. Guangpeng Wu

